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1 Introduction

Solute transport through heterogeneous porous media has
generally been representedbyFickianadvectiondispersion
models. Several analytical andnumericalmodels have been
proposed and applied in the past. Such traditional models
cannot predict the anomalous behaviors like sudden
breakthrough and long tailing that are expected in porous
media traversed by conduits.

The Continuous Time Random Walk (CTRW) model
can be used to simulate solute transport under complex
conditions. This method is based upon a probability
distribution function (pdf) that defines the transition
time of solute particles and ultimately depends upon the
hydrological and geological parameters. CTRW has been
found successful in modelling non-Fickian transport in
heterogeneous porousmedia (Cortis andBerkowitz, 2004).

Solute transport through porousmedia has beenwidely
studied at various scales and the ADE is generally used as
the tool for quantifying and predicting solute transport.
The basic assumptionof theADE is that dispersion follows
Fickian behaviour and hence breakthrough curves of pulse
inputs follow a Gaussian distribution (Berkowitz et al.,
2006).

Numerous experiments have shown that solute
spreading does not follow a Gaussian distribution. The
main reason for this non-Fickian behavior of solute
transport in porous media is the presence of heterogeneity
in medium properties like porosity, permeability, etc., at
various scales. The variations in medium properties affect
the velocity of and path traveled by solute particles and
consequently the time of travel varies with heterogeneity
of the medium.

1.1 AADE

The traditional governing equation for mass transport of
a solute subjected to advection and anisotropic dispersion
in porous media is a partial differential equation called
theAnisotropic Advection-Dispersion Equation (AADE),
which in a 2D Cartesian formulation reads

∂C

∂t
+ Ux

∂C

∂x
=

∂

∂x

(
Dxx

∂C

∂x

)
+

∂

∂y

(
Dyy

∂C

∂y

)
, (1)

where C is solute concentration (ML−3), Ux is the
mean velocity in the X-direction (LT−1), Dij is
the diffusion/dispersion coefficient (L2T−1) in the ij
direction, x and y are spatial coordinates (L) and t is
time (T ). Equation (1) is the governing equation for mass
transport in two dimensions under the assumption of
Fickian dispersion, when macroscopic flow is in the x-
direction. The second term on the LHS of Equation (1)
represents the rate of mass transport due to advection
alone and terms on the right hand side represent mass
transport due to dispersion, which depends upon the
dispersion coefficients (dispersion tensor) Dxx and Dyy in
respective directions. Longitudinal (Dxx) and transverse
(Dyy) dispersion coefficients account for anisotropic
dispersion in porous media.

Advection,mechanical dispersion, anddiffusion are the
dominant mechanisms for transport of solute in porous
media.When advection is significant, dispersion is unequal
between the longitudinal and transverse directions, but
when the advection rate is small and diffusion is dominant,
the longitudinal (Dxx) and transverse (Dyy) dispersion
coefficients are nearly equal (Freeze andCherry, 1979).The
process of mechanical dispersion is anisotropic even if the
porousmedium is isotropicwith respect toporeorientation
andhydraulic conductivity becauseflow in the longitudinal
direction aligned with the mean velocity is dominant and
that stretches the solute plume into an elliptical shape
(Freeze and Cherry, 1979). Hence anisotropic dispersion
must be considered if simulation is performed at Darcy
scale where detailed within-pore flows are not resolved.

Porous media, in general, can exhibit multiple scale
heterogeneity and transport parameters must be linked
properly at various scales for accurate solute transport
modelling. In the past, several models have been proposed
for porous media traversed by conduits in which the
domain is divided into zones and different analytical
models like the Darcy-Weisbach equation, Poiseuille
(cubic) law, and Darcy’s law are used for flux calculation
as appropriate in different zones (Field, 1993; White and
White, 2005). These models may be applicable for Stokes
flow in geometrically simple domains, but in transition and
turbulent regimes and complex domains, suchmodels may
not be appropriate.

2 LBM

2.1 Flow model

The standard Bhatnagar-Gross-Krook (BGK) collision-
basedD2Q9 (2-dimensional, 9 velocity) model (Qian et al.,
1992) is used to simulate fluid flow in open channels in this
work. The macroscopic fluid density (ρ) for the model is

ρ =
8∑

j=0

fj . (2)

The macroscopic velocity u is an average of the
microscopic velocities ej weighted by the directional
densities fj :

u =
1
ρ

8∑
j=0

fj · ej (3)

where
[
e0 e1 e2 e3 e4 e5 e6 e7 e8

]
=[

0 1 0 −1 0 1 −1 −1 1

0 0 1 0 −1 1 1 −1 −1

]
c

and c is the unit speed on the lattice, 1 lattice unit per time
step.

Equations (2) and (3) link the mesoscopic particle
distribution with the macroscopic density and velocity of
the fluid.
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Key steps are streaming and collision of the particles
via the distribution function. The simplest approach uses
the BGK approximation for collision as described below.

Equation (4) represents the time evolution of the
Particle Distribution Function (PDF) (Qian et al., 1992):

fj(x + ejδt, t + δt)

= fj(x, t) − δt

(
fj(x, t) − feq

j (x, t)
τ

)
, (4)

where fj(x + ejδt, t + δt) = fj(x, t) is the streaming part

and δt
( fj(x,t)−feq

j (x,t)
τ

)
is the collision term representing

the rate of change of the particle distribution function due
to collision. The collision operator is simplified in the BGK
model by use of a single relaxation time τ for all directions.
τ is a relaxation time that indicates the rate at which
the system approaches equilibrium through collision. The
equilibrium distribution function feq is (Qian et al., 1992)

feq
j (x) = t∗jρ(x)

(
c2
s + ej · u +

3
2
(ej · u)2 − 1

2
u2

)
, (5)

where cs is the speed of sound, a free parameter in
Equation (5). c2

s = 1
3 in the present study. The weights (t∗j )

are 1
3 for j = 1, 2, 3, 4 (main Cartesian axes), and 1

12 for
j = 5, 6, 7, 8 (diagonals). Theweight for j = 0 rest particles
is t0 = 1 − c2

s

∑
tj = 1 − 5

3c2
s = 4

9 (Ginzburg, 2005). Note
that ifu=0, the equilibriumdistribution function elements
feq

j are simply the weights times the fluid density.
For the simulations we present below, we apply either

periodic or pressure boundary conditions for the fluid flow.
For the pressure boundaries, we adopt themethods of Zou
and He (1997) in which incoming fs are computed based
on the desired pressure and the known fs. In contrast to
the bounce-back boundaries discussed below, the pressure
boundaries are applied at the actual locations of the nodes.

2.2 Solute transport model

Flekkøy (1993) introduced an LB model to simulate
diffusion of miscible fluid flow in 2D and 3D. A separate
equilibrium distribution function with its own relaxation
parameter is derived to simulate the advection-diffusion
equation. Equilibrium distribution functions for flow and
transport are coupled with a common macroscopic flow
velocity; hence the solute component behaves as a passive
scalar.

In this approach two components A and B are assumed
and one is a very small fraction of the other, therefore
collisions between A-B or B-A are assumed negligible and
not included in the computation (Inamuro et al., 2002).
Component A will have the same equilibrium function
as the regular BGK LB model (i.e., it will behave as
a regular fluid) but component B will evolve towards
a new equilibrium as expressed by its own equilibrium
distribution function, which unlike Equation (4) for
component A, contains only the terms up to first order in
flow velocity, as shown in Equation (6) (Flekkøy, 1993):

feq
Bj(x) = t∗ρB(x)[c2

s + ej · uA]. (6)

The density (concentration) for component B is computed
following Equation (2) and its velocityuA is assigned from
component A; B is advected as a passive scalar. The mass
diffusivity Dm between two species is expressed in terms
of relaxation time τB for component B (Flekkøy, 1993):

Dm = c2
s

[
τB − 1

2

]
. (7)

LBM is not free from numerical diffusion. We estimated
numerical diffusion at a moving solute front. At a
velocity of 0.01 lu/ts and an expected diffusion of
3.333̄ × 10−3lu2/ts, we found that the observed diffusion
coefficient was on the order of 10−5lu2/ts greater
(approximately 1% greater). The diffusion coefficient was
approximately 3% higher at a velocity of 0.05 lu/ts, which
is the same as the highest velocity in our results section. See
Ginzburg (2005) for an improved equilibrium function that
reduces numerical diffusion for certain LBM transport
models.

Two types of boundary conditions are applied to the
solute; the first is constant concentration and the second
is zero concentration gradient, which allows advective flux
but prohibits diffusive and dispersive fluxes. Much like
the Zou and He (1997) boundaries applied to the flow,
the constant concentration boundary is based on ensuring
that the sum of the unknown incoming fs plus the known
fs equal the desired concentration (Inamuro et al., 2002).
The zero concentration gradient boundary requires that
the solute fs on each side of the boundary node are
balanced; SukopandThorne (2006) containsmoredetailed
descriptions of these boundaries.

2.3 Macroscopic porous media approach

Fluids flowing through porousmedia experience resistance
that depends in part on the volume density of solids
(the porosity) because no-slip conditions at fluid-solid
interfaces resist the flow and generally become dominant
as the porosity decreases. When this resistance is large
enough relative to driving forces, flow is non-inertial
and governed by Darcy’s law. At higher porosity, in
larger conduits, or under high driving force, resistance
is lower and flows transition towards free fluid flows
governed by the Navier-Stokes equation as the Reynolds
number increases and inertial components of the flow
become more important. Partial damping of inertial
components that allows simulation of a continuum of
flows from strictly non-inertial, Darcy’s law behaviour,
through transitional and inertially-dominated flows at
higher Reynolds numbers can be considered an advantage.
It may reflect the behavior of real porous media better
than a strict Darcy’s law/Stokesian solution when the
permeability is especially high and/or when gradients
are high enough that inertial effects can be important.
Several models have been proposed to model flow in
heterogeneous porous media (Balasubramaniyam et al.,
1987; Gao and Sharma, 1994; Spaid and Phelan, 1997;
Dardis and McCloskey, 1998; Kang et al., 2002; Freed,
1998) and usually use either a damping factor or force that
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allows thisDarcy-to-inertial transition.Whenappropriate,
it is also possible to exclude the potential for inertial
components in porous medium flow by truncating the
inertial terms that appear in the equilibrium distribution
function, Equation (5).

Balasubramaniyam et al. (1987) introduced a velocity-
dependent damping term in the Navier-Stokes equations
to approximate Darcy’s law in porous media at
macroscopic scale in a hexagonal lattice, lattice gas model
context. The approach we implement here is based on
Balasubramaniyam et al. (1987) extended to hexagonal
lattice Boltzmann models by Dardis and McCloskey
(1998), but numerous other approaches are available. The
modified N-S equation with damping term βu is

ν
d2u

dx2 − βu =
1
ρ

dp

dy
, (8)

where, β is linked with a scatterer density ns, which can
be viewed as loosely related to the porosity of a medium
(Balasubramaniyam et al., 1987). The relationship is β =
2ns (Balasubramaniyam et al., 1987). Gao and Sharma
(1994) has defined ns either as a fraction of solid nodes
in the porous medium or probability of each node being
a solid, but interpreting it as simply a damping factor
inversely proportional to permeability over certain ranges
may be most appropriate. In this case, there are no distinct
pores and solids and the kinematic viscosity ν no longer
retains its normal meaning but instead, along with ns,
determines k in lattice units according to k = ν

2ns
. We

always use a single kinematic viscosity throughout the
domain and use ns alone to vary k.

This model can simulate at large (Darcy) scale without
incurring the excessive computational requirements
characteristic of pore scale modelling. To implement the
LBM formacroscopic porousmedia, there is an additional
collision step after streaming and BGK collision. Denote
the PDFs after standard BGK collision by

f∗∗
j (x, t + δt) = f∗

j (x, t) +
feq

j (x, t) − f∗
j (x, t)

τ
(9)

where f∗ denotes the PDFs after streaming. Then the
porous media step is implemented as an additional term
involving the f∗∗

fj(x, t + δt) = f∗∗
j (x, t + δt)

+ns(x)
[
f∗∗

j+2(x + ejδt, t + δt) − f∗∗
j (x, t + δt)

]
. (10)

This reduces to standard BGK collision when ns = 0. For
valuesofns between0and1,wehaveapartial bounce-back
like condition that makes the medium effectively porous;
i.e., the flow can be described by Darcy’s law. We can
have a different ns value at each node in the domain.
Depending upon the scale, each node could represent a
large homogeneous domain.

The effective permeability is given approximately
by k = ν

β for ns < 0.5. In Sukop and Thorne (2006),
simulations with the same code as that applied in this
study show reasonable agreement with k = ν

2ns
, but no

formal error analysis is available at this time. Moreover,
a number of other methods (e.g., Spaid and Phelan, 1997;
Kang et al., 2002; Freed, 1998; Capuani et al., 2003) have
been proposed and may be superior to what we apply
in this work. The emphasis here is on demonstrating the
ability to account for relative permeability differences via
the damping factor and superimpose anisotropic solute
transport; additional work is needed to quantify the
accuracy of the method.

Drawbacks of the lattice BGK equation with the
bounce-back boundary conditions have become evident
during permeability calculations in pore-scale porous
media simulations (Pan et al., 2006). It has been shown
(Ginzburg and d‘Humières, 2003; Pan et al., 2006) that
the inaccuracy observed in the BGK model can be
effectively removed by using the Multiple-Relaxation-
Time (MRT) models, or in the case of the standard BGK
model, by setting the relaxation parameter (τ ) equal to
1 and assuming the effective wall position to be located
about halfway between the fluid and solid nodes. Of the
simulations presented in this paper, all but two have τ = 1.
In the first high Re (low τ , Fig. 6) case, our simulation
suffers from a relatively small error in wall location. In the
second case (Fig. 9) – where we use the damping factor to
simulate the permeable walls of a channel – strict bounce-
back is not being applied and no analysis of potential
inaccuracies is available to the best of our knowledge.

2.4 Anisotropic LBM

The BGK model is the simplest form of collision
mechanism in the LB equation and has a single lumped
relaxation time for each direction that gives isotropic
diffusion when the passive scalar approach is applied. This
is appropriate for the simulationof diffusion in free flowing
fluids. However as explained above, in the solute transport
process in porous media when the flow is not negligible,
dispersion is inherently anisotropic; thus, an anisotropic
dispersion solver is needed to develop an LB model with
capabilities comparable to those of standard porousmedia
solute transport solvers. The dispersion coefficients in
Equation (1) are found using the following equation (Bear,
1979):

Dij = αT

√
u2

x + u2
yδij +

(αL − αT )uiuj√
u2

x + u2
y

(11)

where, δij is Kronecker delta, αL and αT are dispersivity
coefficients in the longitudinal and transverse directions
respectively. i and j represent theCartesian directions (xor
y). For heterogeneous domains, velocity (ux, uy) changes
at every node, so the dispersion coefficient does too.

Zhang et al. (2002a) and Ginzburg (2005) introduced
LB models with more than one relaxation parameter in
the collisionmechanism to simulate anisotropic dispersion.
Zhang’s approach (Zhang et al., 2002a, 2002b) appeared
first in the literature and we implemented it before
Ginzburg (2005) was published. Ginzburg’s method
(Ginzburg, 2005) is more rigorous. Zhang’s method
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(Zhang et al., 2002a) has four relaxation parameters
in nine directions to simulate anisotropic dispersion.
Conservation of mass is ensured by taking a weighted
summation of the particle distribution function, so that the
collision step remains mass invariant (Zhang et al., 2002a).
The mass is calculated as (Zhang et al., 2002a)

m =
∑

j

fj

τj

∑
j

(
t∗jc

2
s

τj

)−1

(12)

and the dispersion tensor in terms of relaxation parameters
τ is expressed as:

Dxx =
δx2

18δt
[4τ1 + τ5 + τ6 − 3],

Dyy =
δy2

18δt
[4τ4 + τ5 + τ6 − 3], (13)

Dxy =
δxδy

18δt
[τ5 − τ6].

We use δx = δy = 1 and δt = 1.
Four relaxation parameters are back calculated from

dispersion coefficients. It is obvious from Equation (13)
that there is no one-to-one relation between relaxation
parameters and dispersion coefficients. Hence one of the
relaxationparameter is chosenand rest are calculatedusing
Equation (13). The relaxation parameters are so chosen
that they are close to each other but not too close to 0.5 to
avoid numerical instability (Zhang et al., 2002b).

This will provide an LBM-based anisotropic dispersion
solver comparable to those found in standard porous
media solute transport models while the regular LBmodel
with ns = 0 retains the potential to solve the Navier-
Stokes equation and the advection diffusion equation in
conduits. This model is verified against one- and two-
dimensional analytical solutions for various boundary
conditions (Zhang et al., 2002a, 2002b).

3 CTRW

Unlike the ADE, the CTRW does not separate a priori
between advective and dispersive components to keep
track of the solutemovement. For a detailed account of the
CTRWmethod, we refer the reader to the recent review by
Berkowitz et al. (2006). The initial conservation equation
is the so-called Master equation,

∂

∂t
Ci(t) = wijCj(t), (14)

where wij is the transition rate [1/T ] of C from point xj

to xi, which describes the fine details of the microscopic
heterogeneity. As a fully detailed deterministic description
of the heterogeneity is impossible to achieve in practice,
Equation (14) is ensemble averaged over all possible
realisations of the heterogeneity to obtain

uC̃i(t) − C(t = 0) = W̃ij(u)C̃j(u), (15)

where the tilde ˜ indicates the Laplace transform C̃(u) ≡
L[C(t); u] ≡ ∫ ∞

0 C(t) exp(−ut)dt, and u is the Laplace

variable. The quantity W̃ij(u) is intimately related to the
waiting-time probability distribution function, Ψ(x, t) of
a jump of length x in the time interval t (Berkowitz
et al., 2006). Introducing the decomposition Ψ(x, t) =
ψ(t)p(x), and assuming that p(x) has finite first and second
moment, it is possible to write the PDE that governs the
solute transport in heterogeneous formations. The one
dimensional form of this PDE reads

uC̃(x, u) − C0(x)

= −M̃(u)Ū
∂

∂x

[
c̃(x, u) − α

∂

∂x
c̃(x, u)

]
. (16)

Equation (16) introduces a time convolutionof the classical
advection-dispersion spatial operator with a memory
function, M̃(u), defined in terms of waiting time pdf ψ(t)

M̃(u) ≡ t̄u
ψ̃(u)

1 − ψ̃(u)
, (17)

and a characteristic time t̄. The identification of the ψ(t)
rests at the heart of the CTRW method. Note that when
ψ(t) = exp(−t), we have L[exp(−t);u] = 1/(1 + u), and
thus M̃(u) = 1; that is, the classical ADE is a special case
of the CTRW transport equation. For any other shape
of the probabilistic distribution, M̃(u) �= 1, and memory
effects are manifest in the behavior of the solute. A host
of parametric forms for ψ(t) has been successfully used in
the literature to fit experimental breakthrough curves and
are described in detail in Berkowitz et al. (2006).

In this approach, the parameters of the ψ(t) pdf
augment the classical number of transport parameters in
the 1-D advection dispersion equation (i.e., Ūx, and α) and
a best fit to the data is sought on this parameter space.

This approach, however, fails to describe the more
complex situations described in this work. In our search
for a CTRW model, we therefore adopt a different point
of view that consists in a numerical deconvolution of the
full time evolution of ψ(t) (Cortis, 2007). We want to
analyse some breakthrough curve (BTC) ce(t) sampled
at the section x0 for discrete number of points tj in the
interval ∆t = [tmin, tmax]. We evaluate an approximation
of the Laplace transform (truncated over ∆t) of the
‘experimental’ BTC ce(t) by means of a Clenshaw-
Curtis quadrature algorithm for N Laplace variables
ui ∈ C, (i = 1 . . . N ). The values of ui are dictated by
the particular choice of the numerical algorithm for the
Laplace transform inversion (Berkowitz et al., 2006).

We can now search for the real and imaginary values of
ψ̃(ui) that minimise the norm between c̃(ui), the solution
of Equation (16) at the given section x0 (for a suitable
set of boundary conditions), and c̃e(ui), the numerical
Laplace transform of ce(t). This non-linear minimisation
procedure is repeated for all values of ui to obtain a
numerical approximation of ψ̃(ui).

Numerical inversion of ψ̃(ui) finally yields the time
evolution of ψ(t). In order to perform the inversion
procedure on the memory function we need, however,
to fix the value of α. The dispersivity α is in general
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not a datum of the problem and can only be given an
a priori estimated value in some interval [αmin, αmax],
where αmin ∼ Ddiff the diffusion coefficient for the solute
in the water, and αmax ∼ d, the characteristic length for
the pore throat size. The non-parametric inversion of
ψ(t) yields thus a family of pdf’s ψ(t|α) depending on
the parameter α, and each member of the parametric
family yields a best fit on the data, ce(tj). The reason for
this behavior is easily understood by considering that the
CTRW PDE in Equation (16) decouples the effects of the
spatial and temporal parts of the probability distribution
of waiting times Ψ(x, t) into two statistically independent
distributions, Ψ(x, t) ≡ p(x)ψ(t), defining thus a non-
dimensional dispersivity (inverse of the Peclet number,
α/L ≡ P e−1)

α

L
=

1
2

∫
p(x)x2 dx∫
p(x)x dx

(18)

whereL is a characteristic macroscopic length scale. As the
p(x) distribution needs only to be characterised by its first
two moments, the decomposition of Ψ(x, t) = p(x)ψ(t), is
not unique, hence the expression for theψ(t) is not unique.
We note, however, that we can usually have very good fit of
the BTC by imposing small values of α, i.e., by distributing
the effect of the spreading more into the temporal part
(the waiting time pdf ψ(t)) rather than the on the spatial
component (the dispersivity). The consistency of the choice
of the small scale Pe will ultimately be assessed only by
looking at BTCpredictions over different sectionsx, which
we reserve for future work.

4 Results and discussion

The value of combining the CTRW and LBM approaches
is that complete knowledge of the velocity field is available
from the LBM simulations and domain heterogeneity
can be varied at will. In the comparisons of CTRW and
ADE models that follow, the CTRW is applied in a 1-D
macroscopic fashion to the 2-D LBM simulations. That
is, while the LBM solves the AADE described above, the
macroscopic ADE and CTRW used to fit the results treats
the flow and transport as macroscopically 1-D.

4.1 Poiseuille flow

One of the simplest types of breakthrough curves is that
which corresponds to Poiseuille flow and solute transport
without diffusion. This problem has an easily-derived
analytical solution and can be closely approximated
by LBM simulation. However, this breakthrough curve
cannot be fitted with the ADE.We use a domain 1000 lu ×
82 lu to simulate solute transport with near-zero diffusion
for periodic flow in a slit. The flow is gravity driven at
g = 6 × 10−6lu/ts2. Relaxation parameters τ for fluid and
solute are 1.0 ts and 0.501 ts respectively. The average
velocity of flow is 0.02 lu/ts.

Figure 1 shows theψ(t) function andFigure 2 shows the
LBM simulation together with the best-fitting ADE and

CTRW solutions. The CTRW is clearly capable of fitting
this simple breakthrough curve.

Figure 1 ψ function against pore volume for zero diffusion
transport between parallel plates

Figure 2 Zero diffusion breakthrough curve from LBM fitted
with CTRW and ADE

The breakthrough andψ(t) are plotted against the number
of pore volumes eluted. Pore volume refers to the volume
of fluid occupying the pore space of a porous medium;
for saturated conditions, it is the total volume of a porous
mediumminus the total volume of solids that comprise the
medium.

For a domain with cross-sectional area A and
volumetric fluid content θ (equal to 1 for flow in a slit),
the number of pore volumes is calculated by dividing the
volume of fluid leached through the column (V = Aθūt)
by the fluid capacity (V0 = AθL) of the medium

T =
V

V0
=

Aθūt

AθL
=

ūt

L
. (19)

The pore volume is routinely used to non-dimensionalize
time in studies of solute breakthrough by dividing the
volume of fluid eluted from the medium by one pore
volume. This is convenient because it enables rapid
comparison to piston flow, where solutes entering the
mediumat 0 pore volumeswould elutewhen 1 pore volume
of solute-laden fluid has passed through the medium.
In the macroscopic porous medium LBM application
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here, 1 pore volume equals the total volume because the
‘solids’ that damp the flow occupy 0 volume. Both relative
concentration and pore volume are dimensionless, and are
used to non-dimensionalize breakthrough curves.

4.2 Porous medium with conduit at low Re

As a model of a heterogeneous porous medium traversed
by a conduit, we use a randomly generated 81 lu × 81 lu
domain with a fractal permeability distribution as shown
in grey scale in Figure 3. White indicates open pores,
black represents solid particles or zero permeability and
grey represents intermediate permeability. In this case ns

is strictly less than 1. The fractal domain in grey scale
resembles the heterogeneous background of a porous
medium.

Figure 3 Heterogeneous fractal domain with curved channel in
the middle

We use the probabilistic bounce-back model to simulate
flow through the porous domain, and the Navier-Stokes
equation is solved in the open conduit/channel (white
zone). We studied two different cases depending upon
the background heterogeneity. The background could be
heterogeneous or homogeneous. For the homogeneous
background, ns is uniformly equal to 0.1.

A constant concentration boundary is enforced at the
inlet and a zero concentration gradient boundary is applied
at the exit. The domain is periodic transverse to the
direction of flow. Flow is pressure driven with a density
difference of 10−3 mu/lu2 between the inlet and exit
boundaries. Transport is advection dominated; diffusion
is kept at a minimumwith the relaxation parameter for the
solute component set equal to 0.501 ts and the dispersivity
ratio (αL/αT ) is 3. The relaxation parameter τ for the
fluid is set to 1.0 ts. In this case, Re = 5.4 in the curved
channel and no eddy mixing is expected. We use CTRW
to fit the LBM simulations. The ψ(t) function obtained is
presented inFigure 4.Unlike themonotonically decreasing
ψ(t) obtained for the Poiseuille flow, this curve shows a
peak at approximately 1.5 pore volume that corresponds to
the onset of solute discharge from the porous background.

While the ADE is grossly incapable of fitting the results,
breakthrough curves measured at the downstream end of
the domain are well-fitted with the CTRWmodel as shown
in Figure 5.

Figure 4 ψ function vs. pore volumes for simulations in
domain of Figure (3)

Figure 5 Breakthrough curve at the downstream end of the
domain with homogeneous and heterogeneous
porous background with a curved conduit in the
middle as shown in Figure 3

4.3 Eddy mixing

Perhaps the simplest flow system that includes the
possibility for eddy mixing is flow over a square obstacle.
The domain is 400 lu long and 100 lu wide. Flow is gravity
driven, with g = 10−7lu/ts2. The relaxation parameter for
the fluid is set to 0.51 ts to induce an eddy behind the
obstacle. The relaxation parameter for solute is equal to
0.51 ts. Figure 6 shows a recirculating eddy flow at Re =
100 after a square obstruction (25lu × 25lu) in a straight
channel.

Figure 7 gives the computed ψ(t) function. It is more
akin to the zero-diffusion Poiseuille flow ψ(t) (Fig. 1) than
to theψ(t) for thedomain comprisedof theporousmedium
and conduit at low Re (Fig. 4), yet important differences
account for transient diffusion into and out of the eddy.
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Figure 6 Velocity field showing eddy circulation behind a
square obstacle at Re = 100

Figure 7 ψ function vs. time for circulating eddy

We measured the breakthrough curve at the end of the
domain and fitted the ADE and CTRW models as shown
in Figure 8.

Figure 8 Breakthrough curve at the end of the domain, for
flow as shown in Figure 6

The ADE fails to capture the character of the curve, which
exhibits a very sudden rise to approximately 0.8 of full
breakthrough followed by a lengthy tailing period due to
diffusion into and out of the recirculating eddy. Similar
results are expected in more complicated flow systems that
involve conduits and eddies.

As a final example, we measured breakthrough curve
at the end of the domain for turbulent flow at Re = 900
in a fractal domain (81 lu × 81 lu) with a curved channel

(Fig. 9). The flow is gravity driven, g = 10−5lu/ts2.
Relaxation parameters for the fluid and solute are 0.501 ts
and 0.51 ts respectively. In the porous medium αL/αT

is again equal to 3. The maximum velocity attained in
channel is 0.0535 lu/ts and the characteristic length for
Re calculation is the width of the channel at the inlet that
is 25 lu.

Figure 9 Fractal domain with curved channel in the middle
modified to enhance turbulence

Theψ(t)derived from theLBMsimulation (Fig. 10) results
is particularly complex. CTRW is again capable of fitting
the LB simulation of the complex solute transport process
far better than the ADE as shown in Figure 11.

Figure 10 ψ function against pore volume on semi-log scale for
simulation in Figure 9

5 Conclusion

These results indicate that CTRW has excellent potential
for modelling complex solute transport problems. Using
LBM to simulate such solute transport processes may
allow linkages between CTRW parameters and porous
medium, conduit, and fluid dynamic characteristics to be
established. Further analysis of the velocity distributions
in the domains and their relationshipswith the derivedψ(t)
functions is necessary. This ultimately may allow CTRW
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parameters to be estimated from readily observable porous
medium and fluid dynamical properties and applied to
challenging field problems.

Figure 11 Breakthrough curve at the end of the domain with
heterogeneous porous background and a curved
conduit in the middle as shown in Figure 9. Flow is
turbulent at Re = 900
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